Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1024520170260060711
Journal of the Environmental Sciences
2017 Volume.26 No. 6 p.711 ~ p.717
Performance Enhancement of Gas-Liquid Mixed Plasma Discharge System using High Speed Agitation
Park Young-Seek

Abstract
Dielectric Barrier Discharge (DBD) plasma is a new technique for use in environmental pollutant degradation, which is characterized by the production of hydroxyl radicals as the primary degradation species. Due to the short lifetime of the chemically active species generated during the plasma reaction, the dissolution of the plasma gas has a significant effect on the reaction performance. The plasma reaction performance can be enhanced by combining the basic plasma reactor with a homogenizer system in which the bubbles are destroyed and turned into micro-bubbles. For this purpose, the improvement of the dissolution of plasma gas was evaluated by measuring the RNO (N-dimethyl-4-nitrosoaniline, an indicator of the generation of OH radicals). Experiments were conducted to evaluate the effects of the diameter, rotation speed, and height of the homogenizer, pore size, and number of the diffuser and the applied voltage on the plasma reaction. The results showed that the RNO removal efficiency of the plasma reactor combined with a homogenizer is two times higher than that of the conventional one. The optimum rotor size and rotation speed of the homogenizer were 15.1 mm, and 19,700 rpm, respectively. Except for the lowest pore size distribution of 10-16 ¥ìm, the pore size of the diffuser showed little effect on RNO removal.
KEYWORD
Dielectric barrier discharge plasma, Plasma gas, Oxidant dissolution, OH radical, Homogenizer
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)